Building the Components for a Biomolecular Computer
نویسندگان
چکیده
We propose a new method for amorphous bio-compatible computing using deoxyribozyme logic gates [1] in which oligonucleotides act as enzymes on other oligonucleotides, yielding oligonucleotide products. Moreover, these reactions can be controlled by inputs that are also oligonucleotides. We interpret these reactions as logic gates, and the concentrations of chemical species as signals. Since these reactions are homogeneous, i.e., they use oligonucleotides as both inputs and outputs, we can compose them to construct complex logic circuits. Thus, our system for chemical computation offers functionality similar to conventional electronic circuits with the potential for deployment inside of living cells. Previously, this technology was demonstrated in closed-system batch reactions, which limited its computational ability to simple feed-forward circuits. In this work, we go beyond closed systems, and show how to use thermodynamically open reactors to build biomolecular circuits with feedback. The behavior of an open chemical system is determined both by its chemical reaction network and by the influx and efflux of chemical species. This motivates a change in design process from that used with closed systems. Rather than focusing solely on the stoichiometry of the chemical reactions, we must carefully examine their kinetics. Systems of differential equations and the theory of dynamical systems
منابع مشابه
Investigating the role of high-rise building shell elements in reducing energy consumption (case example: Isfahan Cascade doctors' residential towers)
Significant energy is used to provide and maintain environmental conditions for thermal comfort in high-rise residential buildings, which largely depends on the components of the shell design. Therefore, to achieve high amounts of energy savings in buildings, high-impact design measures must first be defined and then optimized. This study seeks to answer the question of how the components of th...
متن کاملDistribution of Building Nonstructural Components in Height Subjected to Cost of Damage for Low-Rise Office Buildings
Exceeded losses of nonstructural components from structural ones in most demolished buildings in previous earthquakes and its limitation on functionality of critical facilities and building serviceability after earthquakes should be got the point of view for accounting loss of building as a merit for building performance. This paper attempts to demonstrate the significant role of distribution p...
متن کاملDetection of Ammonia and Phosphine Gas using Heterojunction Biomolecular Chain with Multilayer GaAs Nanopore Electrode
This paper presents Density Functional Theory and Non-Equilibrium Green’s Function based First Principles calculations to explore the sensing property of Adenine and Thymine based hetero-junction chins for Ammonia and Phosphine gas molecules. This modeling and simulation technique plays an important and crucial role in the fast growing semiconductor based nanotechnology field. The hetero-juncti...
متن کاملSimulation of Smoke Emission from Fires in High-Rise Buildings Using the 3D Model Generated from 2-Dimensional Cadastral Data
Having a 3-Dimensional model of high-rise buildings can be used in disaster management such as fire cases to reduce casualties. The fundamental dilemma in 3D building modeling is the unavailability of suitable data sources. However, available cadastral 2D maps could be used as low-cost and attainable resources for 3D building modeling. Smoke will be a great threat to people's health during a f...
متن کاملTOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD
In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004